The hydraulic system of trees: theoretical framework and numerical simulation
نویسندگان
چکیده
Empirical studies pose the problem of the physiological integration of the tree organism, which is also important on the scale of ecosystems. Recently, spatially distributed models emerged, which approach this problem by reflecting the close linkage between physiological processes and the structures of trees and tree stands. In the case of water flow, the tree organism can be regarded as hydraulic system and the branched tree architecture as hydraulic network. Previous models of the hydraulic system either did not take into account the network structure, or they had shortcomings regarding the translation of the underlying physiological assumptions by the discrete computation method. We have developed a theoretical framework which takes the form of a numerical simulation model of tree water flow. A discrete initial boundary value problem (IBVP) combines the phenomena of Darcy flow, water storage and conductivity losses in the hydraulic network. The software HYDRA computes the solution of the IBVP. The theoretical derivation and model tests corroborate the consistent translation of the physiological assumptions by the computational method. Simulation studies enabled us to formulate hypotheses on the following points: (1) differences in the hydraulic segmentation between Picea abies and Thuja occidentalis, (2) responses of the hydraulic system to rapid transpiration changes and to a scenario of drought stress, and (3) how these responses depend on architectural quantities of the trees. The simulation studies demonstrated our possibilities of deriving theoretically well-founded hypotheses about the functioning of the hydraulic system and its relation to system structure. The numerical simulation model is designed as a tool for structure-function studies, which is able to treat tree architecture as independent variable. The model supports the integration of data on tree level, and it can be used for computer experiments which quantify the dynamics of the hydraulic system according to the concepts of system theory. Copyright 1999 Academic Press.
منابع مشابه
Numerical Study of a Pipe Extension Effect in Draft Tube on Hydraulic Turbine Performance
Draft tube of Francis type hydraulic turbine usually consists of: cone, elbow and diffuser. On the contrary, in some power stations an extra pipe should be added to the draft tube at the bottom of cone because of installation limitation. In this paper, this special case has been numerically studied. To this end CFD analysis was applied to simulate all parts of hydraulic turbine. A homogeneous m...
متن کاملNumerical Simulation of Hydraulic Frac-turing Process for an Iranian Gas Field in the Persian Gulf
Most of the Iranian oil and gas wells in the Persian Gulf region are producing through their natural productivity and, in the near future, the use of stimulation methods will be undoubtedly necessary. Hydraulic fracturing as a popular technique can be a stimulation candidate. Due to the absence of adequate research in this field, numerical simulation can be an appropriate method to investigate ...
متن کاملOscillation Control of Aircraft Shock Absorber Subsystem Using Intelligent Active Performance and Optimized Classical Techniques Under Sine Wave Runway Excitation (TECHNICAL NOTE)
This paper describes third aircraft model with 2 degrees of freedom. The aim of this study is to develop a mathematical model for investigation of adoptable landing gear vibration behavior and to design Proportional Integration Derivative (PID) classical techniques for control of active hydraulic nonlinear actuator. The parameters of controller and suspension system are adjusted according to be...
متن کاملExperimental and Numerical Investigation of Bottom Outlet Hydraulic Model
Using experimental models along with conducting numerical analysis have been widely used in performance recognition and optimization of hydraulic equipments. Numerical modeling has lower cost rather than experimental one; however practical tests are commonly used because of the hydraulic structure importance especially in dams. Meanwhile numerical methods could be used for future designs throug...
متن کاملNumerical Simulation of Effect of Drain Pipe in Uplift Force and Exit Hydraulic Gradient in Gravity Dams
In this study, the effects of diameter and location of drain pipe in uplift force and exit hydraulic gradient in the foundation of gravity dams are investigated. For this purpose, a numerical model of gravity dam foundation is simulated using finite elements method. The results indicate that drain pipe under the gravity dam reduces the uplift force and exit hydraulic gradient. Location of the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of theoretical biology
دوره 201 4 شماره
صفحات -
تاریخ انتشار 1999